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We are currently investigating the present desulfurizative 
stannylation and its applications to organic synthesis.19 
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Radical Ions in Photochemistry. 7. Configurational 
Isomerization of Alkenes Induced by Irradiation 
of Charge-Transfer Complexes1 

Sir: 

Photophysical studies have firmly established that one of 
the deactivation pathways of excited charge-transfer complexes 
and exciplexes can lead to the triplet of either (or both) the 
component donor or acceptor.2 This phenomenon is potentially 
useful for photochemistry since the factors controlling for­
mation of the triplet are not directly dependent upon the decay 
processes of the individual components of the complex, nor 
upon the rate of energy transfer as is photosensitization 
(triplet-triplet transfer). We report here the first example of 
a configurational isomerization which involves the triplet of 
an olefin, where the photostationary state is dependent upon 
the absorption spectra of the charge-transfer complexes in­
volving the individual isomers. 

The long-wavelength absorption curves of the donors, cis-
and trans-stilbene (I and II), and the acceptors, maleonitrile 
(III) and fumaronitrile (IV), and the charge-transfer com­
plexes involving these components, are shown in Figure 1. We 
call particular attention to differences in the curves for the 
complexes between cis- and trans-stilbene and fumaronitrile 
(Figure la). An analysis of the variation in these spectra as a 
function of fumaronitrile concentration indicates that the 

Figure 1. a, (1) 0.2 M IV, (2) 0.2 M II, (3) 0.2 M I, (4) 0.2MI + 0.2 M 
IV, (5) 0.2 M II + 0.2 M IV (benzene solution); b, (1) 0.2 M III, (2) 0.2 
M I + 0.2 M III, (3) filter solution A, 1 cm (1 g OfBiCl3 in 150 mL of 10% 
HCl), (4) Corning glass filter 0-51, (5) 0.2 M II + 0.2 M III (benzene 
solution). 

difference in these two curves is the result of both a larger as­
sociation constant and extinction coefficient for the H-IV than 
for the I-IV complex.3'4 

Irradiation of a degassed benzene solution of rra«5-stilbene 
(II, 0.2 M) and fumaronitrile (IV, 0.2 M) in the region of the 
charge-transfer transition (X >356 nm) leads predominantly 
to isomerization of both the stilbene and the dinitrile; other 
photochemical reactions are relatively unimportant. The 
progress of the isomerizations can be followed by vapor-phase 
chromatography (VPC) and 1H nuclear magnetic resonance 
(NMR) spectroscopy and the isomeric compositions, as a 
function of irradiation time, are summarized in Table I. 

The isomerization of the trans-stilbens is more efficient than 
that of the dinitrile and the mixture attains a maximum 
(>80%) composition of cis- stilbene. Continued irradiation 
leads to a decrease in the cis- to trans-stilbene ratio as the 
fumaronitrile isomerizes to maleonitrile. Prolonged irradiation 
(10 days) gives the photostationary state, which is also obtained 
starting with I and IV. An even higher ratio (I/II, 6) ofm-
stilbene can be attained if a light filter which cuts off irradia­
tion of longer wavelengths (X >360 nm) is used, although the 
isomerization is much slower since less light is absorbed under 
these conditions. Notice, in Figure la, that both I and II absorb 
beyond the cut-off of filter A (X >356 nm). Prolonged irra­
diation of II under these conditions causes isomerization to a 
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Table I. The Configurational Isomerization of /rans-Stilbene (II) 
and Fumaronitrile (IV) Induced by Irradiation of the Charge-
Transfer Complex" 

t,h 

0 
5 
27 
45 
97 
208 
279 
(200 
(209 

I, % 

75 
80 
82 
78 
73 
72 
25 
86 

II, % 

100 
25 
20 
18 
22 
27 
28 
75)* 
14 

III,% 

6 
17 
22 
32 
40 
40 

11 

IV, % 

100 
94 
83 
78 
68 
60 
60 

89)' 

" Starting with a degassed benzene solution of II (0.2 M) and IV 
(0.2 M) at 10 0C. The irradiation source was a 450-W medium-
pressure mercury vapor lamp (Hanovia) through chemical solution 
filter A (see Figure lb). Similar results were obtained using acetoni-
trile as solvent. * Same conditions as in footnote a except in the ab­
sence of the dinitrile. This is the photostationary state under these 
conditions.c Same conditions as in footnote a except a Corning glass 
filter (0-51) was used (see Figure lb). 

photostationary state rich in II; IV is not isomerized under 
these conditions. 

We believe the isomerization of both the stilbenes and the 
dinitriles involves their triplet states, formed, at least in part, 
by a deactivation pathway of the excited state of the charge-
transfer complexes. One possible mechanism for formation of 
the triplets is a triplet exit channel of the geminate radical-ion 
pair.2 An estimate of the energy available within the geminate 
radical-ion pair, based upon the oxidation potential of the 
donors and the reduction potential of the acceptors, indicates 
that formation of the triplets of I-IV would be spontaneous.5 

Evidence consistent with this mechanism is the observation of 
photochemically induced dynamic nuclear polarization 
(CIDN P) enhanced absorption of the vinyl protons of I when 
an acetonitrile-tf3 solution of II and IV is irradiated in the ' H 
NMR spectrometer.6 

These results contrast markedly with a recent report, by 
Lewis and Johnson, on the photochemical reaction between 
?ra/w-stilbene and dimethyl fumarate.7 A major reaction with 
the diester in benzene was cycloaddition, while isomerization 
of the /rans-stilbene was attributed to direct excitation. 
However, we observe similar CIDNP of I (acetonitrile-^ 
solution) in this case as well; at least part of the stilbene iso­
merization must occur by the triplet exit channel of the gem­
inate radical-ion pair. Also related to these results is an early 
report of the observation of CIDNP emission of the vinyl 
protons of III, upon irradiation of the naphthalene-IV system.8 

The fact that we do not observe emission from III upon irra­
diation of H-IV is not surprising in view of the relative inef­
ficiency of the isomerization of IV. 
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Concerning the Diene-Induced 
Photodechlorination of Chloroaromatics1 

Sir: 

In contrast to the amine-enhanced reaction,2-4 few diene-
haloaromatic photodehalogenations have been reported3 and 
the salient features of this transformation remain undisclosed. 
We present evidence indicating that photodechlorination in 
the 9,10-dichloroanthracene (DCA)-2,5-dimethyl-2,4-hex-
adiene (DMH) system5-7 in acetonitrile (i) is a consequence 
of exciplex and triplex formation, (ii) involves protonation 
rather than hydrogen abstraction, and (iii) proceeds through 
long-lived ion radical intermediates.8" 

Irradiation (404 nm) of DCA in degassed acetonitrile con­
taining DMH affords 9-chloroanthracene (MCA)8b and diene 
related products. At wavelengths where MCA absorbs (X <395 
nm), anthracene formation is observed from solutions irradi­
ated to high conversions. 

Scheme I provides the simplest mechanism consistent with 

Scheme I. MCA Formation in Degassed Acetonitrile 
k , DMH> t 1DCA** DMH ' 

• heat +Ac 

hy 

DCA + DMH 

spectroscopic measurements7 and quantum yields for DCA 
loss (</>_DCA)-8b,c Rate constants for formation and decay of 
the DCA-DMH singlet exciplex (1E*) and DCA-2DMH 
singlet triplex (1T*) in acetonitrile have been discussed.7 De­
tailed treatment of 0-DCA dependence on [DMH] gives keTm 
= 92 ± 7 M - 1 at 30 0C in good agreement with kerm values 
of 106 and 89 M - 1 obtained from steady-state and transient 
fluorescence data,7 respectively.9 Remarkably, triplex for­
mation does not alter the efficiency of MCA production {k^jt 
= 0.24 vs. kptTt/(\ — k-tTt) = 0.25, where re and r t are ex­
ciplex and triplex lifetimes, respectively). 

Direct dechlorination within 1E* is unlikely since inefficient 
cycloaddition rather than MCA formation occurs in nonpolar 
media.6b Dissociation of 1E* to ion radicals10 (DCA-- and 
DMH+-) provides a pathway to MCA, eq 1, in accord with that 
generally postulated for quencher-induced photodehaloge-

DCA MCA + R- (1) 

0002-7863/79/1501 -1895S01.00/0 © 1979 American Chemical Society 


